پیشبینی بقای بیماران مبتلا به سرطان پستان با استفاده از دو مدل رگرسیون لجستیک و شبکه عصبی مصنوعی
Authors
Abstract:
Background and Objectives : recent years, considerable attention has been paid to statistical models for classification of medical data according to various diseases and their outcomes. Artificial neural networks have been successfully used for pattern recognition and prediction since they are not based on prior assumptions in clinical studies. This study compared two statistical models, artificial neural network and logistic regression, to predict the survival of patients with breast cancer. Methods: Two models were applied on cancer registry data, Kerman, southeast of Iran, to predict survival. The data of 712 breast cancer patients in the age group 15 to 85 years was used in this study. The logistic regression and three-layer perceptron neural network models were compared in terms of predicting the survival. Sensitivity, specificity, prediction accuracy, and the area under ROC curve were used for comparing the two models. Results : In this study, the sensitivity and specificity of logistic regression and artificial neural network models were (0.594, 0.70) and (0.621, 0.723), respectively. Prediction accuracy and the area under ROC curve for two models were (0.688, 0.725) and (0.70, 0.725), respectively. Conclusion: Although there were insignificant differences in the performance of the two models for predicting the survival of the patients with breast cancer, the corresponding results of artificial neural network were more appropriate for predicting survival in such data.
similar resources
مقایسه مدل شبکه عصبی مصنوعی و رگرسیون پارامتری در پیشبینی بقای بیماران مبتلا به سرطان معده
Background & Objective: Using parametric models is common approach in survival analysis. In the recent years, artificial neural network (ANN) models have increasingly used in survival prediction. The aim of this study was to predict of survival rate of patients with gastric cancer by using a parametric regression and ANN models and compare these methods. Methods: We used the data of 436 gast...
full textمقایسهی مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیشبینی بقای بیماران مبتلا به سرطان معده
سابقه و هدف: یکی از روشهای آماری تحلیل دادههای بقا، مدل رگرسیونی کاکس است که نیازمند پذیرههایی مانند متناسب بودن مخاطرات است. در چند دهه اخیر بهکارگیری مدل شبکه عصبی مصنوعی برای پیشبینی دادههای بقا، افزایش یافته است. این مطالعه به منظور پیشبینی بقای بیماران مبتلا به سرطان معده به کمک دو مدل رگرسیونی کاکس و شبکه عصبی مصنوعی انجام شده است. مواد و روشها: طی سالهای 1381 لغایت 1385، تعداد ...
full textمقایسه مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان پستان
مقدمه: امروزه انواع سرطان یکی از مهم ترین عوامل مرگ و میر در دنیا و سرطان پستان از شایع ترین آن ها در زنان میان سال می باشد. میزان بقای پس از تشخیص و درمان در این بیماران یکی از شاخص های مهم در کنترل بیماری است. در این مطالعه دو مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران سرطان پستان با یکدیگر مقایسه شده اند. مواد و روش ها: داده های این پژوهش که از نوع مطالعات بقا است، از پرون...
full textمقایسه مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان پستان
مقدمه: امروزه انواع سرطان یکی از مهم ترین عوامل مرگ و میر در دنیا و سرطان پستان از شایع ترین آن ها در زنان میان سال می باشد. میزان بقای پس از تشخیص و درمان در این بیماران یکی از شاخص های مهم در کنترل بیماری است. در این مطالعه دو مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران سرطان پستان با یکدیگر مقایسه شده اند. مواد و روش ها: داده های این پژوهش که از نوع مطالعات بقا است، از پروند...
full textبررسی عوامل خطر بروز عودموضعی و متاستاز در بیماران مبتلا به سرطان پستان با استفاده از مدل لجستیک دو متغیره
مقدمه: یکی از مشکلات اصلی در درمان سرطان پستان، متاستاز است که نشاندهنده وخیمتر شدن سلامت بیمار است. شناخت عوامل مؤثر بر این مشکل میتواند راهی برای پیشگیری و درمان فراهم آورد. هدف از این مطالعه تعیین عواملخطر بروز عودموضعی و متاستاز در بیماران مبتلا به سرطان پستان با استفاده از مدل لجستیک دومتغیره است. روش کار: دراین مطالعه توصیفی از نوع طولی، اطلاعات جمعیت شناختی و وضعیت بیماری تمام بیمارا...
full textMy Resources
Journal title
volume 10 issue None
pages 1- 8
publication date 2014-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023